" />

Latest Cover

Online Office

Contact Us

Issue:ISSN 1000-7083
          CN 51-1193/Q
Director:Sichuan Association for Science and Technology
Sponsored by:Sichuan Society of Zoologists; Chengdu Giant Panda Breeding Research Foundation; Sichuan Association of Wildlife Conservation; Sichuan University
Address:College of Life Sciences, Sichuan University, No.29, Wangjiang Road, Chengdu, Sichuan Province, 610064, China
Email:[email protected] & [email protected]
Your Position :Home->Past Journals Catalog->2020 Vol.39 No.1

Evolution and Expression of Liver Cell Cycle-Related Genes in Myospalax baileyi
Author of the article:AN Zhifang1,2, WEI Linna3, WANG Zhijie1,2, LI Suhua1,2, XU Bo1,4, LI Yongxiao1,4, WEI Lian4, WEI Dengbang1,2,4*
Author's Workplace:1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
2. Medical College, Qinghai University, Xining 810016, China;
3. Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
4. College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
Key Words:Myospalax baileyi; cell cycle-related gene; evolution analysis; altitude; expression
Abstract:The plateau zokor (Myospalax baileyi) is a specialized subterranean rodent living on the Qinghai-Tibet Plateau which has strong ability in adaptation to hypoxic environments. Hypoxia induces arrest of cell cycles G1 and G2. In order to understand the molecular mechanism of the adaptation of M. baileyi to hypoxic environments, the homologies, positive selection sites and the convergent evolution sites of p21, CyclinD1, CDK6, CyclinE, CDK2, 14-3-3-σ, Gadd45α, B99 and CyclinB1 genes were analyzed by MEGA 7.0, PAML 4.8 program and Ancestor program, respectively. In addition, the expression levels of these genes in the liver tissues under different altitudes (3 300 m and 2 260 m) were determined by real-time PCR and compared with those of SD rat (Rattus norvegicus). The results showed that, (1) the nucleotide and amino acid sequences of the cell cycle-related genes in M. baileyi had high homologies (>90%) with Nannospalax galili; p21, CyclinD1, CyclinE and CyclinB1 of M. baileyi and N. galili occurred convergent sites. SIFT test showed that 27 and 105 variation sites might influence the regulation of p21 and CyclinB1, respectively. (2) Compared to low altitude of 2 260 m, the expression level of p21 (cell cycle G1-related gene) in M. baileyi liver tissues under high altitude of 3 300 m was significant increased, while its downstream genes CyclinD1, CyclinE, CDK6 and CDK2 were significant decreased. By contrast, the expression levels of these genes were not significantly different in R. norvegicus. Moreover, no significant differences of the expression levels of cell cycle G2-related genes such as Gadd45α, B99, 14-3-3-δ and CyclinB1 were detected in M. baileyi and R. norvegicus under different altitudes. Compared to R. norvegicus, the expression levels of all the tested cell cycle-related genes were significantly higher in M. baileyi. These results suggested that, the up-regulated p21 and down-regulated CyclinD1, CyclinE, CDK6 and CDK2 genes, which can induce the arrest of cell cycle G1 and thus provide sufficient time for DNA repair and ensure the accuracy of DNA replication, contribute to the long-time adaptation of M. baileyi to hypoxic environments. The regulation of cell cycle in the liver of M. baileyi was not only related to the expression levels of cell cycle-related genes, but may also be related to the variation sites at residue 27 and 105 of p21 and CyclinB1, respectively.
2020,39(1): 1-14 收稿日期:2018-11-21
作者簡介:安志芳(1990-),博士研究生,主要從事高原動物資源保護與利用研究,E-mail:[email protected]
*通信作者:魏登邦,E-mail:[email protected]
樊乃昌, 施銀柱. 1982. 中國鼢鼠(Eospalax)亞屬分類研究[J]. 獸類學報, 2(2):183-199.
李筱, 魏蓮, 汪洋, 等. 2015. 高原鼠兔心臟中Ldh-c基因的表達及其對無氧糖酵解水平的影響[J]. 生理學報, 67(3):312-318.
劉仁華. 1995. 中國鼢鼠的分類及地理區劃[J]. 國土與自然資源研究, 3:54-55.
王祖望, 曾縉祥, 韓永才. 1979. 高原鼠兔和中華鼢鼠氣體代謝的研究[J]. 動物學報, 25(1):75-85.
許利娜, 魏蓮, 汪洋, 等. 2015. 高原鼠兔腦組織中精子特異性乳酸脫氫酶的作用[J]. 獸類學報, 35(4):431-437.
翟中和, 王喜忠, 丁明孝. 2000. 細胞生物學[M]. 北京:高等教育出版社.
Agarwal ML, Taylor WR, Chernov MV, et al. 1998. The p53 network[J]. Journal of Biological Chemistry, 273(1):1-4.
An ZF, Zhao K, Wei LN, et al. 2018. p53 gene cloning and response to hypoxia in the plateau zokor, Myospalax baileyi[J]. Animal Biology, 68(3):289-308.
Arieli R, Ar A. 1981. Heart rate responses of the mole rat (Spalax ehrenbergi) in hypercapnic, hypoxic, and cold conditions[J]. Physiological Zoology, 54(1):14-21.
Ashur-Fabian O, Avivi A, Trakhtenbrot L, et al. 2004. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(33):12236-12241.
Avivi A, Ashur-Fabian O, Joel A, et al. 2007. P53 in blind subterranean mole rats-loss-of-function versus gain-of-function activities on newly cloned Spalax target genes[J]. Oncogene, 26(17):2507-2512.
Balbín M, Hannon GJ, Pendás AM, et al. 1996. Functional analysis of a p21WAF1, CIP1, SDI1 mutant (Arg94→Trp) identified in a human breast carcinoma evidence that the mutation impairs the ability of p21 to inhibit cyclin-dependent kinases[J]. Journal of Biological Chemistry, 271(26):15782-15786.
Balter M, Vogel G. 2001. Cycling toward Stockholm[J]. Science, 294(5542):502-503.
Bozdogan H. 1987. Model selection and Akaike's information criterion (AIC):the general theory and its analytical extensions[J]. Psychometrika, 52(3):345-370.
Brooks DG. 1989. Akaike information criterion statistics[J]. Technometrics, 31(2):270-271.
Buffenstein R, Jarvis JUM. 2002. The naked mole rat-a new record for the oldest living rodent[J/OL]. Science of Aging Knowledge Environment:Sage KE, 2002(21):pe7[2018-08-10]. https://www.sageke.sciencemag.org/cgi/content/full/2002/21/pe7. DOI:10.1126/sageke.2002.21.pe7.
Buffenstein R. 2008. Negligible senescence in the longest living rodent, the naked mole-rat:insights from a successfully aging species[J]. Journal of Comparative Physiology B, 178(4):439-445.
Burland TG. 2000. DNASTAR's lasergene sequence analysis software[M]//Stephen M, Stephen AK. Bioinformatics methods and protocols. Totowa, NJ:Humana Press.
Cazzalini O, Scovassi AI, Savio M, et al. 2010. Multiple roles of the cell cycle inhibitor p21 CDKN1A in the DNA damage response[J]. Reviews in Mutation Research, 704(1):12-20.
Coats S, Flanagan WM, Nourse J, et al. 1996. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle[J]. Science, 272(5263):877-880.
Danial-Farran N, Nasser NJ, Beiles A, et al. 2017. Adaptive evolution of coagulation and blood properties in hypoxia tolerant Spalax in Israel[J]. Journal of Zoology, 303(3):226-235.
Darriba D, Taboada GL, Doallo R, et al. 2012. jModelTest 2:more models, new heuristics and parallel computing[J/OL]. Nature Methods, 9(8):772[2018-07-02]. https://doi.org/10.1038/nmeth.2109.
Edrey YH, Casper D, Huchon D, et al. 2012. Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity[J]. Aging Cell, 11(2):213-222.
Fang XD, Nevo E, Han LJ, et al. 2014. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax[J/OL]. Nature Communications, 5:3966[2018-09-01]. https://www.nature.com/articles/ncomms4966. DOI:10.1038/ncomms4966.
Gamerman D, Lopes HF. 2006. Markov chain Monte Carlo:stochastic simulation for Bayesian inference[M].Florida, USA:Chapman and Hall/CRC.
Gardner LB, Li Q, Park MS, et al. 2001. Hypoxia inhibits G1/S transition through regulation of p27 expression[J]. Journal of Biological Chemistry, 276(11):7919-7926.
Gartel AL, Radhakrishnan SK. 2005. Lost in transcription:p21 repression, mechanisms, and consequences[J]. Cancer Research, 65(10):3980-3985.
Glotzer M, Murray AW, Kirschner MW. 1991. Cyclin is degraded by the ubiquitin pathway[J]. Nature, 349(6305):132.
Goda N, Ryan HE, Khadivi B, et al. 2003. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia[J]. Molecular and Cellular Biology, 23(1):359-369.
Hammer S, To KK, Yoo YG, et al. 2007. Hypoxic suppression of the cell cycle gene CDC25A in tumor cells[J]. Cell Cycle, 6(15):1919-1926.
Hermeking H, Lengauer C, Polyak K, et al. 1997. 14-3-3σ is a p53-regulated inhibitor of G2/M progression[J]. Molecular Cell, 1(1):3-11.
Hubbi ME, Gilkes DM, Rey S, et al. 2013. A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication[J/OL]. Science Signaling, 6(262):ra10[2018-09-01]. https://stke.sciencemag.org/content/6/262/ra10. DOI:10.1126/scisignal.2003417.
Huelsenbeck JP, Ronquist F. 2001. Mrbayes:Bayesian inference of phylogenetic trees[J]. Bioinformatics, 17(8):754-755.
Innocente SA, Abrahamson JLA, Cogswell JP, et al. 1999. p53 regulates a G2 checkpoint through cyclin B1[J]. Proceedings of the National Academy of Sciences of the United States, 96(5):2147-2152.
Johnson DG, Walker CL. 1999. Cyclins and cell cycle checkpoints[J]. Annual Review of Pharmacology and Toxicology, 39:295-312.
Kastan MB, Onyekwere O, Sidransky D, et al. 1991. Participation of p53 protein in the cellular response to DNA damage[J]. Cancer Research, 51(23 Part 1):6304-6311.
Kim EB, Fang X, Fushan AA, et al. 2011. Genome sequencing reveals insights into physiology and longevity of the naked mole rat[J]. Nature, 479(7372):223-227.
Krtolica A, Krucher NA, Ludlow JW. 1998. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities[J]. Oncogene, 17(18):2295-2304.
Kumar P, Henikoff S, Ng PC. 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nature Protocols, 4(7):1073.
Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7):1870-1874.
Li J, Meyer AN, Donoghue DJ. 1997. Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation[J]. Proceedings of the National Academy of Sciences of the United States, 94(2):502-507.
Lukas J, Groshen S, Saffari B, et al. 1997. WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium[J]. The American Journal of Pathology, 150(1):167.
Luo Y, Hurwitz J, Massagué J. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1[J]. Nature, 375(6527):159-161.
Malik A, Domankevich V, Lijuan H, et al. 2016. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax:a cross-species analysis of brain transcriptome[J/OL]. Scientific Reports, 6:38624[2018-08-01]. https://www.nature.com/articles/srep38624. DOI:10.1038/srep38624.
Miyawaki S, Kawamura Y, Hachiya T, et al. 2015. Molecular cloning and characterization of the INK4a and ARF genes in naked mole-rat[J]. Inflammation and Regeneration, 35(1):42-50.
Nevo E, Ivanitskaya E, Beiles A. 2001. Adaptive radiation of blind subterranean mole rats:naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel:Spalax galili (2n=52), S. golani (2n=54), S. carmeli (2n=58) and S. judaei (2n=60)[M]. Leiden, Netherlands:Backhuys Publishers.
Nevo E. 1999. Mosaic evolution of subterranean mammals:regression, progression, and global convergence[M]. Oxford, UK:Oxford University Press.
Nevo E. 2011. Evolution under environmental stress at macro-and microscales[J]. Genome Biology and Evolution, 3:1039-1052.
Noble MEM, Endicott JA, Brown NR, et al. 1997. The cyclin box fold:protein recognition in cell-cycle and transcription control[J]. Trends in Biochemical Sciences, 22(12):482-487.
Pines J, Hunter T. 1994. The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B[J]. The EMBO Journal, 13(16):3772-3781.
Pucci B, Kasten M, Giordano A. 2000. Cell cycle and apoptosis[J]. Neoplasia, 2(4):291-299.
Robbins J, Dilwortht SM, Laskey RA, et al. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence:identification of a class of bipartite nuclear targeting sequence[J]. Cell, 64(3):615-623.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3:Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 19(12):1572-1574.
Schmidt H, Malik A, Bicker A, et al. 2017. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax-a liver transcriptomics approach[J/OL]. Scientific Reports, 7:14348[2018-08-01]. https://www.nature.com/articles/s41598-017-13905-z. DOI:10.1038/s41598-017-13905-z.
Shao Y, Li JX, Ge RL, et al. 2015. Genetic adaptations of the plateau zokor in high-elevation burrows[J/OL]. Scientific Reports, 5:17262[2018-08-01]. https://www.nature.com/articles/srep17262. DOI:10.1038/srep17262.
Sherr CJ, Roberts JM. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases[J]. Genes & Development, 9(10):1149-1163.
Sherr CJ, Roberts JM. 1999. CDK inhibitors:positive and negative regulators of G1-phase progression[J]. Genes & Development, 13(12):1501-1512.
St?ver BC, Müller KF. 2010. TreeGraph 2:combining and visualizing evidence from different phylogenetic analyses[J/OL]. BMC Bioinformatics, 11(1):7[2018-07-30]. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-7.
Swofford D. 2002. PAUP:phylogenetic analysis using parsimony, version 4.0 b10[M]. Sunderland:Sinauer Associates.
Tian X, Azpurua J, Hine C, et al. 2013. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat[J]. Nature, 499(7458):346-349.
Vogelstein B, Lane D, Levine AJ. 2000. Surfing the p53 network[J]. Nature, 408(6810):307-310.
Wang Z, Xu S, Du K, et al. 2016. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans[J]. Molecular Biology and Evolution, 33(12):3144-3157.
Yang Z. 2007. PAML 4:phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 24(8):1586-1591.
Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level[J]. Molecular Biology and Evolution, 14(5):527-536.
Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Molecular Biology and Evolution, 22(12):2472-2479.
Zhao Y, Tang JW, Yang Z, et al. 2016. Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax[J]. Proceedings of the National Academy of Sciences of the United States, 113(8):2146-2151.
CopyRight©2020 Editorial Office of Sichuan Journal of Zoology